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Abstract The effective mass of the Frohlich polamn is calculated with the two-mode squeezed 
states in the intermediate-coupling region and found to be in close agreement with the results 
of other models. Wilhin the Same approach, the induced charge density amund an electron in 
polar solids is calculated. Our result for this charge density contains an additional term which 
shows a feature in the spatial dependence as a manifestation of the squeezing efFecL 

1. Introduction 

An electron moving slowly in an ionic crystal distorts and displaces its surrounding ions, 
establishing a polarization field which acts back on the electron whose properties are then 
modified; in particular, the electron acquires a self-energy and an enhancement of its Bloch 
effective mass. The electron together with its polarization cloud is called a polaron and the 
model for such a system is investigated by the Frohlich Hamiltonian (m) 

where we have used the standard notation 111, and V, = - i ( f t~ /4~ ' /~ ) (4rra /V) '~* .  Here 
a is the coupling strength and U = (2mwo/F1)'/~, and the LO phonons are assumed to be 
dispersionless, i.e. oq = 00. 

This Hamiltonian has not been exactly solved so far; however numerous mathematical 
techniques have been used to obtain its approximate solutions. These calculations can be 
classified in certain regimes according to the strength of the coupling a. The weak- and 
intermediate-coupling region, corresponding to the range 0 < (Y < 6, is dealt with by 
perturbation theories and variational techniques. In the case of a > 6 we have a strong 
coupling region, where. a completely different type of approximation is required [Z]. Besides 
these approaches, the path integral method of Feynman is unique in a way to give results 
for all coupling strengths. An extensive review of the subject up to 1987 was given by 
Mitra et al 131. 

No matter which approximation is made on the FH the ground state energy in zero 
temperature comes out to be in the following form: 

where EO and m* are respectively the self-energy and the effective mass of the polaron. 
Of the above mentioned regimes, the intermediate-coupling region is most interesting. This 
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interest arises from the fact that variational techniques used in this region exhibit a critical 
behaviour in which a free polaron undergoes a formal phase transition from an itinerant 
state to a localized one. This, however, is now being accapted as an d f a c t  of the 
approximation. In fact, as fust pointed out by Peeters and Devreese [4], another type 
of variational approximation within the Feynman path integral approach does not exhibit 
this artifact. 

Variational methods are based on two successive transformations, which are developed 
by Lee, Low and Pines (UP) [5]. As an extension of this approach, it is possible to 
introduce a third transformation that includes a variational function so that the energy may 
be minimized further. Recently such a procedure has been carried out by a canonical 
transformation, which produced squeezed states of phonons. These have been used to 
calculate the ground state energy Eo. and the results showed a lowering of the energy [6]. 

In the present work, our aim is, on the basis of this approach, to calculate the effective 
mass and the reduced charge density of the large polarons. It is well known that there are 
several definitions for the polaron mass [7]. Our definition of the effective mass is such 
that 
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(3) 

This definition is due to the approach we have made, and is not necessarily the unique 
one to make contact with the experimentally measured mass, which is usually the cyclotron 
mass. Therefore in section 2. we calculate the ground state energy in the case of P # 0. 
In section 3, the dependence of the reduced charge density on the coupling strength is 
calculated by the same method. 

2. The effective mass 

The first canonical transformation of LLP is 

This eliminates the electron coordinate in the M. The second transformation used by U P  is 

where f9  is a variational function to be employed in minimizing the ground state energy. 
Furthermore. it should be pointed out that this latter transformation generates coherent states 
out of the phonon fields. 

Under these transformations the new Hamiltonian contains terms that have combinations 

multiplication [8]. LLP used only Ho of the new Hamiltonian to obtain the ground state 
energy and the effective mass in a variational method where the energy functional was 
minimized with respect to f , .  In order to diagonalize the part that contains quadratic terms, 
i.e. Hz, it is necessary to use a third canonical transformation. This is achieved through 
a type of Bogoliubov transformation [SI and a squeezed state transformation [6], both of 

of 6 ,  and b,, t gradually changing from the zero degree up to the quartic one of their 
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them consider only the case of P = 0. To obtain the effective mass we will follow the 
latter approach, which gives a lower ground state energy. We now introduce the third 
transformation, as discussed fully in [6], that is formed by two-mode squeezed states by 
which the correlation between phonons is  involved in a natural way, 

where the squeezing angle pqq, depends on two wave vectors q and q' of the LO phonons. 
The squeezed state vector for the ground state of the phonon subsystem is formed as follows: 

IWphh = U3lvac) (7) 

where the ket on the right is the zero phonon state. At this point we can either firstly 
transform HO and Hz by U3 and then calculate the expectation value in the zero phonon 
state or equivalently use (7) to calculate the expectation value HO and Hz. 

Since two LO phonons are involved in the wave function it is essential to rewrite Ho and 
H2 in a convenient form as described in [6] and then the expectation value of the energy 
can be obtained as functions of f q ,  pqq, and P.  The energy functional E[f,. qq4]  is to be 
minimized with respect to these functions, which gives rise to two coupled equations, 

+ 4- 4 4 '  . -fqfqr cosh( 7) 2 4 6  = 0 
u u  

where &(q) = 1 + (q/u)', P = P f i u  and d = E/lim are dimensionless quantities. 
Here G(q) = sinh2(pqq,/N) is a scalar function of q and proportional to a2 due to the 
dependence on therefore this term is to be neglected at a further stage. By rearranging 
the equations (8) and (9) we express the ground state energy in a simpler form 
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where rl is defined by 
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Calculation of the ground state energy (10) requires solutions of two coupled equations (8) 
and (9) for fq and qq9, as well as q. Since it is impossible to solve them exactly, we try to 
obtain the results to a first approximation. Keeping the first terms of the expansion of the 
hyperbolic function in powers of qq9r/N that is very small, one can easily write 

where Wo,(q, d )  and &(q) are given in the following form: 

and y is the angle between q and q .  In the first approximation, f, can be chosen as 
-V:/&(q) which corresponds to the unsqueezed case and only terms up to the order of 
P2 in all expressions are considered. Under these assumptions we put the ground state 
energy (10) and the equation (1 1) for q in  the following form 

where x = q / u  and x' = i / u -  are dimensionless variables. After expanding Gol(x, y )  and 
&(x) as a power series in P and retaining terms up to P2 for small P and performing 
integrals we finally obtain 

(18) 
1 2400 
6 9a 
-ff + -7-10-3cr2 - orfzwo - 0.0135cr2R00 
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Table 1. Various analytical resulls for the effective polaron mass in the inlermediatecoupling 
region. 

" / m  

U P  (l+a/6)[1-O0.01u2/(1 +@)I-'= I+a/b+0.Olarz 
Haga [lo] 
h s e n  [9] and Rtiseler [I  I ]  
Peetem and Devreese [I21 

(12 + (1)/(12 - a )  r. 1 + u/6 + 0.01389a' 
1 + (116 + 0.02362az 
1 + e l 6  t &(I' = 1 + (116 + 0 . 0 2 5 0 3 ~ ~  

Inserting the expression (19) for 9 into the ground state energy (18) results in 

-&WO - 0.0135a'fr~ 
P' E = -  

2m' (CY) 

D Z  
E = &  -&WO - 0.0135a'fr~ 

2m' (CY) 

where "(or) is the effective mass in the twwnode squeezed state approximation and is 
given by 

To make contact with the other works, (21) can be written, by expanding as a power series 
in CY and keeping terms up to CY', as follows: 

m* 
m 
_ -  - 1 + ~ C Y  + 0.0270d 

We summarize the results for the effective mass obtained by various authors in table 1 
from which we see that our result is in good agreement with them. The LLP result 
was obtained, after the above mentioned two transformations and variational procedures, 
by calculating the lowest order correction to the energy resulting from that pan of the 
Hamiltonian which was neglected, i.e. H2. The method developed by h e n  [9] is notable 
as being a sophisticated calculation in which correlations between phonons are taken into 
account through the wave vectors of pairs of emitted virtual phonons, as well as giving the 
best available results for the energy and the effective mass of the polaron in the intermediate 
coupling region, for CY c 4.5. 

Haga and Roseler's works are based on the variational techniques: while the former 
work is valid for the intermediate coupling, the latter one is calculated in the limiting case 
of weak coupling. 

Table 2. Various numerical results for the effective polaron mass in the inremediatecoupling 
region. 

" / m  (I 

1 2 3 4 5 

Schultz 1131 1.196 1.472 1.889 2.579 3.887 
Gerlach er al [I41 1.196 1.476 1.900 2606 3.940 
Alexandrou e r d  1151 1.196 - 1.824 - 3.080 
Lu er a/ [ I q  1.194 1.465 1.868 2.526 3.163 
SO2 1.194 1.442 1.744 2.102 2.514 
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Various numerical results for the polaron effective mass are given in table 2 where (22) 
is listed numerically in the last row as SQZ. All of them are developed by path integral 
or functional integral techniques and use a different definition of the effective mass from 
(3), with the exception of Gerlach et d , who have derived the polaron mass by means 
of the ground state energy. The difference from our result is attributed to the fact that the 
definition of the effective mass is not well founded in the path integal approach, contrary 
to the ground state energy. 

3. Induced polarization charge density 

Since the squeezing transformation affects the ground state energy and the effective mass 
of the polaron, it would be of interest to investigate the polarization charge density induced 
by the electron within this approach. The induced polarization charge density at point T is 
defined by Poisson's equation 

(V%(r)) = -4np(r) (23) 

where the avarage is taken over the transformed phonon states under LLP and the two- 
mode squeezed state transformations successively. Since the electrostatic potential operator 
is represented by the interaction term in the m, the induced polarization charge density 
around the electron becomes 

where we have taken P = 0 and = U~UZ~O), and r is measured from the position 
of the electron which is at rest. When the transformed forms of annihilation and creation 
operators are considered, the resulting polarization charge density can be written as a sum 
of two terms 

and these are given by 

Performing the integrals in (26a) and (26b), the total induced charge density is found to be 
in the form 

ahwuz e-"' aZhmou2 
2ne ur 12ne 

P(T)  = -- +- [I2 - (~r )~]e-" '  
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where the first term is the LLp result and the second one is due to the two-mode squeezed 
s t a k  transformation. The total induced charge around the electron is obtained by integrating 
(27) over the whole space in spherical polar coordinates 

(28) 
Q = /d3vp(v) = -. e 

E 

This is exactly the total charge induced by the electron in a dielectric medium. In order to 
examine the spatial behaviour of (U), it is firstly rewritten as 

where i = r / @ / m w ) ' / 2  and p(i)  = p ( r ) / [ Q / ( F ~ / m % ) ~ / ~ ]  are 
Finally (29) is represented by the sum of two terms 

dimension is variables. 

where p ~ ~ p ( f l  and & ~ z ( i )  are the dimensionless forms of (26a) and (266), respectively. 
Their P dependences are separately shown in figure 1. The dependence on i. of the total 
induced charge density given by (29) is plotted in figure 2 for U = 3. 

0.01 

0.008 

0.006 

0.004 

0.002 

0 

-0.002 
0 1 2 3 4 5 G 7 8 - 

I' 
Figure 1. Induced charge densities a5 a function of i .  The dotted c w e  is for h: the solid 
curves are for &QZ for a = 1.2,3. 
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As seen in figure 1, there is a negative charge density region in the behaviour of & ~ z ( i )  
beyond i = A, in addition to the normal positive one in the range 0 < F -= &; furthermore 
both of them change with 01 by the same amount. This can be verified easily by calculating 
the total charge due to & ~ z ( i )  for both regions, the result is ~0.227orQ respectively so 
they are summed up to zero. Accordingly, the overall charge due to polarization is the same 
as given in (28). It is normally expected that the charge density induced by the electron 
should be positive; however the appearance of such a negative region in the accompanying 
charge cloud is a manifestation of the squeezing effect. Such a feature is absent in the UP 
result and in the expression for the polarization charge density derived by the path integral 
method [17]. As for the total density, this negative region is slightly suppressed as seen in 
figure 2. 

It should be noted in figure 1 that & Q Z ( ~ )  becomes zero and independent of 01 at the 
point i = = 2.4, due to (31). However the point where the total charge density becomes 
zero is 01 dependent. 

4. Discussion and conclusion 

The polaron effective mass is an important quantity that can be a link between experimental 
results and theoretical studies where all the fundamental assumptions are made. In the 
present paper we have calculated the effective mass of the Frohlich polaron by means of 
squeezed states, which are adapted from quantum optics [18]. The result has come out to 
be larger than those of the methods obtained in the intermediate-coupling region. This can 
be attributed to an excess number of virtual phonons accompanying the electron. Indeed, 
this is justified by calculating the average number of virtual phonons which is defined as 
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where the average is taken through squeezed states with minimum uncertainties. It is easy 
to see that within the approximation used in section 2, this number becomes 

where the first term gives a/2. which is the well known LLP result, while the second term 
is from the squeezing effect. The final result is 

(3) 

In the weak-coupling limit, this number is a / 2  within the perturbative approach and 
f + 0.0318392a2 on the basis of the diagram technique [19]. In the Feynman description 
of the polaron by Peeters and Devreese, this number of virtual phonons is plotted as a 
function of a in figure 2 of [ZO]. As clearly seen from this figure, it is proportional to 
a12 in the weak-coupling region, and appears to have corrections proportional to a2 in the 
intermediate region. 

In section 3 we calculated the polarization charge density induced by the electron in 
polar solids. The result found by LLP for this density decreases with Coulomb-like behaviour 
at small distances and becomes exponentially damped at large distances. This result is 
verified by the path integral method for small electron-phonon coupling [ 171. Apart from 
the usual charge density of LLP, a term containing a negative region appearing in our result 
is entirely unique to the squeezing effect. ?he physical origin of the negative region is 
charge conservation. It is well known that the total induced charge around an electron 
in a dielectric medium is e/?. In our approach the total charge density is given in (25), 
where the first term is equal to the LLP result and already gives a total charge of e/?. 
Therefore fisspz(7) has to contain a negative region if there exists a positive one that will 
arise from an additional polarization of the medium. The squeezing effect is responsible for 
this polarization. This can be qualitatively seen from the phase space picture of quantum 
oscillators representing ionic motions. For simplicity let us have a single oscillator with 
position x and momentum p. After the squeezed transformation they will become x exp( -9) 
and pexp(9) respectively [la]. Since the displacement yields the induced polarization (’P) 
whose divergence (-V . ’P) is the charge density, any change in them will provide an 
excess charge density and consequently this will give rise to a negative region, considering 
the conservation of the total charge. 

It is thus to be concluded from the present study that squeezed states can play a 
prominent role in condensed matter physics. Here we have calculated the polaron effective 
mass and the induced charge density around an electron. While the result for the effective 
mass is very accurate, the latter calculation shows a characteristic feature which is absent 
from other works. 

a 
( N )  = 5 + 0.0253978a2. 
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